
OSINT Reverse
Engineering of the ARFz

Marc Newlin / marc@bastille.net / @marcnewlin
Hack in the Box 2016 CommSec

Marc Newlin
Security Researcher @ Bastille Networks

Agenda

1. Radio Primer

2. OSINT for ARFz

3. Mouse Reverse Engineering

4. MouseJack Demo

Radio Primer
(from a hacker’s perspective)

Hardware vs. Software Defined Radio
● Fixed functionality

● Really good at one thing

● Wifi card, wireless mouse dongle,

bluetooth dongle, cellular modem, etc

● Reconfigurable on the fly

● Relies on computer or FPGA

● Lots of open source protocol stacks

available

● USB and host computer timing limitations

Modulation
● Defines how the carrier wave is

modified to encode the bits we are
transmitting

● FSK - frequency shift keying
● OOK - on off keying
● ASK, QAM, OFDM, DSSS, FHSS
● Generally knowing the modulation is

sufficient to decode w/ GNU Radio

Symbols and Samples
● Symbol is a fixed-length state that encodes one or more bits

● Sample is a single value resulting from quantizing radio data by the SDR

● Need at least two samples per symbol

● 1Mbps FSK needs a 2MS/s sample rate

Frequencies and Hopping
● Device can operate on one or more frequencies (channels)

● Frequency hopping -- actively hopping between channels

● Frequency agility -- opportunistically selecting channels for best performance

● Some devices stay on a single channel, regardless of transceiver support

Channel Coding
● Add redundancy to detect and correct errors during transmission

● Has the potential to alter payloads so they aren’t immediately recognizable

● FEC (Forward Error Correction)

● ARQ (Automatic Repeat Request)

● Repetition Coding

● Convolutional Coding

Reverse Engineering

MouseJack necessitated efficiency
● 50+ devices, 4 transceiver families

What are we trying learn?
● How does device work?

● Can we uniquely identify each device?

● What data can we passively sniff?

● Does its presence pose a risk?

● What does aberrant or malicious behavior look like?

● How can we fuzz the device/protocol?

● How quickly can we find all this out?

Standardized vs. Proprietary
1. Fully Standardized (Bluetooth, BLE, ZigBee, etc)

2. Partially Proprietary (nRF24L, TI-CC2544, etc)

3. Fully Proprietary (undocumented RFIC, SDR, etc)

RadioShack Wireless Mouse (and Dongle)
● Fully Proprietary

● 2.4GHz wireless mouse + dongle

● Need to do some OSINT!

Reverse
Engineering

Process

1. OSINT

2. Verify w/ Spectrum Analyzer

3. ARFz to Bytes

4. Packet Formats

5. Payloads and Protocol(Where da ARFz at??)

1. OSINT for ARFz

OSINT Resources
● FCC documents

● RFIC product specifications

● The Google

Best case, what will we find?
● Modulation

● Symbol Rate / Data Rate

● Frequencies

● Frequency Hopping Behavior

● Channel Coding

● Whitening / Scrambling

● Packet Format

● Protocol Behavior

FCC Certification Process
1. Device is manufactured

2. Test lab evaluates the device

3. Telecommunications certification body issues a grant of certification

4. Test report, application, and related exhibits published in FCC database

5. Some exhibits are confidential (temporarily or permanently)

Finding FCC Exhibits
● Lookup FCC ID @ https://www.fcc.gov/general/fcc-id-search-page
● Click on the ‘Detail’ link on the results page

https://www.fcc.gov/general/fcc-id-search-page

Relevant Exhibit Types
Test Reports

Internal Photos

User Manuals

Schematics

Operational Descriptions

Behavior of RF emissions

What’s in the box?!?

Varying levels of technical detail

Rare, but useful

Also rare, and only sometimes useful

Test Reports
● Does the device meet FCC guidelines?

○ Transmit power

○ Bandwidth

○ Frequencies

○ Duty cycle

● 2498 authorized test labs

● Each lab has one or more report formats

● Each lab provides a varying degree of detail

Test Report from Bureau Veritas (test lab)

RadioShack Mouse Test Report
● 2408-2474 MHz

● 67 channels

● Intertek test lab

RadioShack Dongle Test Report
● 2408-2474 MHz
● 34 channels, 2 MHz spacing
● GFSK modulation
● 1Mbps data rate
● Neutron Engineering test lab

Internal Photos
● Varying degree of resolution

● Some vendors blackout RFIC markings

● No standardization

Internal photo of a Microsoft dongle
● nRF24LU+

● Partially blacked out markings

● Well documented RFIC

● (easy mode)

RadioShack Mouse Internal Photos
● Low resolution

● Nothing useful

RadioShack Dongle Internal Photos
● Better picture

● Still nothing useful

Schematics
● Most vendors request permanent confidentiality on schematics

● More common with lesser known manufacturers

● When available, extremely useful to learn RFIC specifics

RadioShack Mouse Schematic
● MA4302 RFIC

Operational Descriptions and User Manuals
● Describes the device behavior in an undefined format

● Hit or miss, but potentially fruitful

● Some vendors include useful technical details

RadioShack Mouse Operational Description
● Bluetooth !?!?

● FSK modulation

● 2408-2474 MHz

● 67 channels

● MA4302 RFIC

RadioShack Dongle User Manual
● 2408-2472 MHz

● GFSK modulation

● 1Mbps data rate

● human house only!!!

MA4302 mouse via Google-fu
● Marketing material from

another mouse with the
same RFIC

● FSK modulation
● FHSS
● Mosart MA4302 RFIC
● More Google-fu, still no

RFIC spec sheet

So what do we “know”?
● GFSK modulation
● 2408-2474 MHz frequency range
● 34 or 67 channels
● 1Mbps data rate
● Maybe FHSS?
● Maybe Bluetooth?

2. Verify w/ Spectrum Analyzer

Tools and Equipment
● Software Defined Radio

● RF Test Enclosure

● GNU Radio

● gr-fosphor

● baudline

● RadioShack mouse and dongle

Software Defined Radio
1. Streams raw RF data to a host

computer
2. Reconfigurable bandwidth and

center frequency
3. Lots of popular options (USRP,

BladeRF, HackRF, RTL-SDR,
LimeSDR, etc)

GNU Radio
● Open source SDR toolkit written in C/C++ and Python

● Large selection of signal processing libraries

● Hardware support for common SDR platforms

● Efficient prototyping

GNU Radio Companion
● Drag and drop

flow graph creator
● Quick and easy

gr-fosphor
● OpenCL/OpenGL accelerated spectrum

visualization tool
● Out-of-tree GNU Radio module

baudline / gr-baz
● Spectrum visualization tool

● Excellent for analyzing signals

● GNU Radio block in gr-baz

RF Test Enclosure (Faraday Cage)
● Attenuates the ARFz
● Isolate devices for reverse

engineering
● Prevent unintended side effects of

fuzzing
● Keeps the FCC happy :)

SDR to gr-fosphor flow graph
● USRP data source

● gr-fosphor data sink

● 40 MHz bandwidth

● 2420 MHz center frequency

● 15 dB antenna gain

RF Test Enclosure

gr-fosphor: RadioShack dongle
● 2414 MHz

● TX at regular intervals

● Looks about 1 MHz wide

● Sync packet?

gr-fosphor: RadioShack mouse + dongle
● Also camped at 2414 MHz
● 3 packet sequence with mouse

movement
● Sync + data + ack?

3. ARFz to Bytes

Flowgraph to demodulate mouse/dongle traffic
● USRP data source at 2414 MHz

● GFSK demodulator

● 2 MHz sample rate

● 2 SPS (1Mbps data rate)

● Bits to bytes

● File data sink

Capture some packets
● Need to generate repeated packets

● Capture dongle alone to isolate the sync packets

● Capture mouse + dongle, repeatedly clicking the mouse

4. Packet Format

Anatomy of an RF packet
Preamble

Sync field

Address

Header

Payload

Checksum

Postamble

Clock correction / synchronization

Start of payload delimiter, can be static value or the address

Receiver address

Describes the packet, depending on protocol complexity

The actual data being transmitted

Checksum, CRC, etc

End of frame delimiter, more clock correction

Prep the data (binary to hex)
$ xxd -p dongle.bytes | tr -d '\n' > dongle.bytes.hex

$ xxd -p dongle-mouse.bytes | tr -d '\n' > dongle-mouse.bytes.hex

Standard command line tools enable quick and dirty analysis.

● grep
● xxd
● sort
● uniq

Byte boundaries mean we only see a subset of the packets.

Find the preamble (dongle)
$ grep -Po "(00|ff|aa|55)+" dongle.bytes.hex | sort | uniq -c | sort -nr

528 5555555555
 514 ffff
 468 aaaaaaaaaa
 392 ffff5555555555
 349 ffffaaaaaaaaaaaa
 281 55ff
 243 aaaa
 226 5555
 158 aa55
 156 55aa

We grep for a tone (0x00 or 0xFF), or alternating 1’s and 0’s (0xAA or 0x55).

Find the longest repeated sequences (dongle)
$ grep -Po "(ffff[a5]{12}).{16}" dongle.bytes.hex | sort | uniq -c | sort -nr
 392 ffffaaaaaaaaaaaa1116e8d14b782aff
 1 ffff5aaaaaaaaaaa1116e8d14b782aff

● Look for shifted preamble variants (FFFF followed by 12 A’s or 5’s)
● Increase the number of bytes after the preamble until it no longer repeats
● The most repeated sequence is likely the dongle sync packet

Sanity check the packets (dongle)
$ grep -Pob "(ffffaaaaaaaaaaaa1116e8d14b782aff)+" dongle.bytes.hex | head -n 10
28215:ffffaaaaaaaaaaaa1116e8d14b782aff
32221:ffffaaaaaaaaaaaa1116e8d14b782aff
44253:ffffaaaaaaaaaaaa1116e8d14b782aff
46255:ffffaaaaaaaaaaaa1116e8d14b782aff
56291:ffffaaaaaaaaaaaa1116e8d14b782aff
58297:ffffaaaaaaaaaaaa1116e8d14b782aff
80365:ffffaaaaaaaaaaaa1116e8d14b782aff
84377:ffffaaaaaaaaaaaa1116e8d14b782aff
98420:ffffaaaaaaaaaaaa1116e8d14b782aff
126506:ffffaaaaaaaaaaaa1116e8d14b782aff

Packet offsets are multiples of ~2000 bytes, or 16ms. Looks good!

Isolate the mouse packets
$ sed -i "s/ffffaaaaaaaaaaaa1116e8d14b782aff//g" dongle-mouse.bytes.hex

Remove the dongle packets from the mouse + dongle capture to isolate the mouse packets.

Find the preamble! (mouse)
$ grep -Po "(00|ff|aa|55)+" dongle.bytes.hex | sort | uniq -c | sort -nr
 2898 ffff
 765 5555555555
 666 aaaaaaaaaa
 578 ff00
 357 55ff
 280 aaaa
 272 5555
 215 55aa
 204 aa55

We grep for a tone (0x00 or 0xFF), or alternating 1’s and 0’s (0xAA or 0x55).

No repeated occurrences of the dongle preamble, so we’ll try ‘em all!

Find the longest repeated sequences (mouse)
$ grep -Po "aaaa.{20}" dongle-mouse.bytes.hex | sort | uniq -c | sort -nr | head -n 10

14 aaaa1116e8d126dbfa706aff
11 aaaa1116e8d121dbfae0efff
10 aaaa1116e8d12edbfad1c3ff
 8 aaaa1116e8d12fdbfae1f4ff
 7 aaaa1116e8d12ddbfa819aff
 7 aaaa1116e8d129dbfa4146ff
 7 aaaa1116e8d128dbfa7171ff
 6 aaaa1116e8d123dbfa8081ff
 6 aaaa1116e8d122dbfab0b6ff
 5 aaaa1116e8d12ddbfa819aff

Many repeated payloads, which may point to a sequence number.

Sanity check the packets (mouse)
$ grep -Pob "(...)" dongle-mouse.bytes.hex | head -n 10
167823:aaaa1116e8d126dbfa706aff
263746:aaaa1116e8d122dbfab0b6ff
303715:aaaa1116e8d126dbfa706aff
423469:aaaa1116e8d121dbfae0efff
455379:aaaa1116e8d127dbfa405dff
591291:aaaa1116e8d124dbfa1004ff
691083:aaaa1116e8d121dbfae0efff
738884:aaaa1116e8d128dbfa7171ff
878869:aaaa1116e8d129dbfa4146ff
1170597:aaaa1116e8d12edbfad1c3ff

Packet offsets are multiples of ~2000 bytes and more spaced out than the dongle
packets. Looks good!

Packet candidates
Dongle packet:

ffffaaaaaaaaaaaa1116e8d14b782aff

Address / sync word?:

1116e8d1

Preambles / postambles:

ffffaaaaaaaaaaaa
aaaa
ff

Mouse packets:

aaaa1116e8d126dbfa706aff
aaaa1116e8d121dbfae0efff
aaaa1116e8d12edbfad1c3ff
aaaa1116e8d12fdbfae1f4ff
aaaa1116e8d12ddbfa819aff
aaaa1116e8d129dbfa4146ff
aaaa1116e8d128dbfa7171ff
aaaa1116e8d123dbfa8081ff
aaaa1116e8d122dbfab0b6ff
aaaa1116e8d12ddbfa819aff

Checksum / CRC
● 3 byte dongle payload
● 5 byte mouse payload
● potentially an 8 or 16 bit CRC (if any)
● check dongle payloads with CRC RevEng

$ reveng -w 16 -s 26dbfa706a 21dbfae0ef 2edbfad1c3 2fdbfae1f4 2ddbfa819a
29dbfa4146 28dbfa7171 23dbfa8081 22dbfab0b6 2ddbfa819a

reveng: no models found

No dice :/

How about whitening?
● Some guesswork is required
● XOR’ing with some value?
● Reverse byte order?

$./reveng -w 16 -s 7c81a0302a 7b81a0b5ba 7481a0998b 7581a0aebb 7781a0c0db
7381a01c1b 7281a02b2b 7981a0dbda 7881a0ecea 7781a0c0db

width=16 poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000
check=0x31c3 name="XMODEM"

Success!! Payloads are whitened by XOR’ing with 0x5A repeated, and the CRC
is in reversed byte order. Dongle payload appears to have no CRC.

Mouse click packet format
Preamble

Address

Payload

Checksum

Postamble

AAAA

1116E8D1

3 bytes

CRC-16 XMODEM

FF

5. Payloads and Protocol

Build out the model with additional test data
● Test second mouse/dongle set to identify static vs. dynamic values

● Dongle sync packets are identical across devices, appear to be unprotected by CRCs

● Sync field is unique across devices, so it is indeed an address

● Second mouse/dongle set camps at 2426 MHz

● Mouse movement packets are 5 bytes in length

What about ACKs?
$ grep -Pob "1116e8d1.{12}" dongle-mouse.bytes.rev.hex
1932509:1116e8d120dbfad0d8 - mouse click payload
1932592:1116e8d14b78ff2752 - ACK(?), ~300us later

TDMA timing
● Dongle transmits sync packets every 16ms

● Mouse transmits packets following sync packets

● Dongle ACKs mouse packets

Reverse Engineering Payloads
● Generate RF traffic with known expected behavior

● Mouse clicks, scrolling, movement

● What changes over the air?

Mouse Payload Formats
Movement

4D 08 07 06 05

4 | Frame Type

D | Sequence Number

08 | X1

07 | X2

06 | Y1

05 | Y2

Scroll

7E 81 FF

7 | Frame Type

E | Sequence Number

81 | “Button” State

F | Button Type (Scroll Wheel)

F | Scroll Motion (Down 1)

Click

7A 81 A1 // left down

7A 01 A1 // left up

7 | Frame Type

A | Sequence Number

81 | Button State

A | Button Type (Button)

1 | Button (Left)

So what have we learned about the mouse?
● 4 packet formats

○ Dongle sync

○ Dongle ACK

○ Mouse movement

○ Mouse click

● GFSK modulation, 1Mbps data rate

● Device pair camps on a single channel

● Dongle transmits timing and frequency

synchronization packets

● Mouse times its transmissions based on

the dongle

● Likely 34 channels, spaced at 2 MHz,

between 2408-2474 MHz

● Definitely not Bluetooth

● XMODEM variant of CRC-CCITT

Quadcopter Visual Analysis
● Controller Only
● Transmitting every ~15ms

Quadcopter Visual Analysis
● Quadcopter Connected to

Controller
● Quadcopter perhaps ACKs

controller packets (higher power
packets)

Quadcopter Visual Analysis
● Quadcopter Connected to

Controller
● Zoomed in view
● FSK symbols are clearly visible

Process Recap

1. OSINT

2. Verify w/ Spectrum Analyzer

3. ARFz to Bytes

4. Packet Formats

5. Payloads and Protocol

MouseJack Demo - CrazyRadio Dongle

● nRF24LU1+ based dongle
● Part of the CrazyFlie

project
● Open source
● 225 meter injection range

with yagi antenna

MouseJack Demo - Logitech
● Forced pairing

● Disguise keyboard as mouse

● Unencrypted keystroke injection into keyboard address

● Firmware patch issued by Logitech

Questions?
Marc Newlin

marc@bastille.net

@marcnewlin

