OSINT Reverse Engineering of the ARFz

Marc Newlin / marc@bastille.net / @marcnewlin Hack in the Box 2016 CommSec

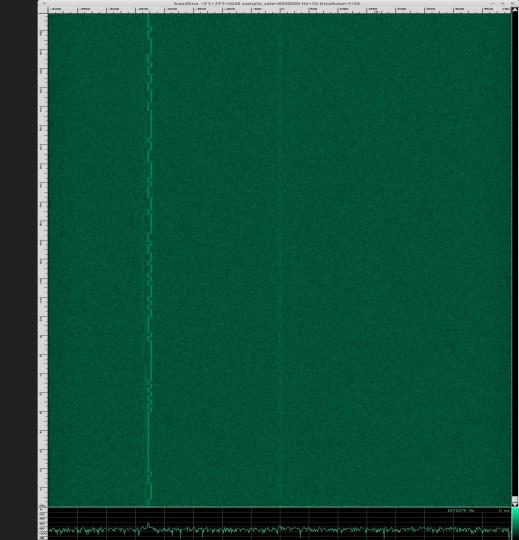
Marc Newlin

Security Researcher @ Bastille Networks

Agenda

- 1. Radio Primer
- 2. OSINT for ARFz
- 3. Mouse Reverse Engineering
- 4. MouseJack Demo

Radio Primer (from a hacker's perspective)


Hardware vs. Software Defined Radio

- Fixed functionality
- Really good at one thing
- Wifi card, wireless mouse dongle, bluetooth dongle, cellular modem, etc

- Reconfigurable on the fly
- Relies on computer or FPGA
- Lots of open source protocol stacks available
- USB and host computer timing limitations

Modulation

- Defines how the carrier wave is modified to encode the bits we are transmitting
- FSK frequency shift keying
- OOK on off keying
- ASK, QAM, OFDM, DSSS, FHSS
- Generally knowing the modulation is sufficient to decode w/ GNU Radio

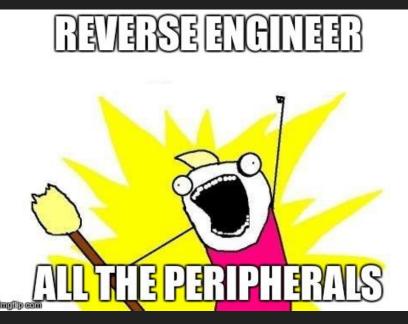
Symbols and Samples

- Symbol is a fixed-length state that encodes one or more bits
- Sample is a single value resulting from quantizing radio data by the SDR
- Need at least two samples per symbol
- 1Mbps FSK needs a 2MS/s sample rate

Frequencies and Hopping

- Device can operate on one or more frequencies (channels)
- Frequency hopping -- actively hopping between channels
- Frequency agility -- opportunistically selecting channels for best performance
- Some devices stay on a single channel, regardless of transceiver support

Channel Coding


- Add redundancy to detect and correct errors during transmission
- Has the potential to alter payloads so they aren't immediately recognizable
- FEC (Forward Error Correction)
- ARQ (Automatic Repeat Request)
- Repetition Coding
- Convolutional Coding

Reverse Engineering

MouseJack necessitated efficiency

• 50+ devices, 4 transceiver families

What are we trying learn?

- How does device work?
- Can we uniquely identify each device?
- What data can we passively sniff?
- Does its presence pose a risk?
- What does aberrant or malicious behavior look like?
- How can we fuzz the device/protocol?
- How quickly can we find all this out?

Standardized vs. Proprietary

- 1. Fully Standardized (Bluetooth, BLE, ZigBee, etc)
- 2. Partially Proprietary (nRF24L, TI-CC2544, etc)
- 3. Fully Proprietary (undocumented RFIC, SDR, etc)

RadioShack Wireless Mouse (and Dongle)

- Fully Proprietary
- 2.4GHz wireless mouse + dongle
- Need to do some OSINT!

Reverse Engineering Process

(Where da ARFz at??)

1. OSINT

- 2. Verify w/ Spectrum Analyzer
- 3. ARFz to Bytes
- 4. Packet Formats
- 5. Payloads and Protocol

1. OSINT for ARFz

OSINT Resources

- FCC documents
- RFIC product specifications
- The Google

Best case, what will we find?

- Modulation
- Symbol Rate / Data Rate
- Frequencies
- Frequency Hopping Behavior

- Channel Coding
- Whitening / Scrambling
- Packet Format
- Protocol Behavior

FCC Certification Process

- 1. Device is manufactured
- 2. Test lab evaluates the device
- 3. Telecommunications certification body issues a grant of certification
- 4. Test report, application, and related exhibits published in FCC database
- 5. Some exhibits are confidential (temporarily or permanently)

Finding FCC Exhibits

- Lookup FCC ID @ <u>https://www.fcc.gov/general/fcc-id-search-page</u>
- Click on the 'Detail' link on the results page

OET Exhibits List

10 Matches found for FCC ID JNZMR0054

View Attachment	Exhibit Type	Date Submitted to	FCC Display	Type Date Available
Confidentiality Request.pdf	Cover Letter(s)	12/11/2015	pdf	12/15/2015
Cover Letter - Agent Authorization.pdf	Cover Letter(s)	12/11/2015	pdf	12/15/2015
External Photos.pdf	External Photos	12/11/2015	pdf	05/10/2016
Label ID Label Location Information.pd	If ID Label/Location Inf	0 12/11/2015	pdf	12/15/2015
Internal Photos.pdf	Internal Photos	12/11/2015	pdf	05/10/2016
RF Exposure Information (MPE).pdf	RF Exposure Info	12/11/2015	pdf	12/15/2015
Test Report.pdf	Test Report	12/11/2015	pdf	12/15/2015
Test Setup Photos.pdf	Test Setup Photos	12/11/2015	pdf	05/10/2016
User Manual (Statements).pdf	Users Manual	12/11/2015	pdf	05/10/2016
User Manual.pdf	Users Manual	12/11/2015	pdf	05/10/2016

Relevant Exhibit Types

Test Reports

Internal Photos

User Manuals

Behavior of RF emissions

What's in the box?!?

Varying levels of technical detail

Schematics

Rare, but useful

Operational Descriptions

Also rare, and only sometimes useful

Test Reports

- Does the device meet FCC guidelines?
 - Transmit power
 - Bandwidth
 - Frequencies
 - Duty cycle
- 2498 authorized test labs
- Each lab has one or more report formats
- Each lab provides a varying degree of detail

Test Report from Bureau Veritas (test lab)

Product	2.4GHz Cordless Mouse	
Brand	Logitech	
Test Model	M-R0054	
Status of EUT	ENGINEERING SAMPLE	
Power Supply Rating	DC 3.7V from battery	
	DC 5V from USB interface	
Modulation Type	GFSK	
Modulation Technology	DTS	
Transfer Rate	Up to 2Mbps	
Operating Frequency	2402MHz ~ 2481MHz	
Number of Channel	8	
Output Power	3.899 mW	
Antenna Type	PCB printed antenna with 1.32 dBi gain	
Antenna Connector	NA	
Accessory Device	NA	
Data Cable Supplied	USB Charging cable (Shielded, 1.8m with one core)	

RadioShack Mouse Test Report

- 2408-2474 MHz
- 67 channels
- Intertek test lab

1.1 Product Description

The Equipment Under Test (EUT) is a Wireless Optional Mouse. It can pair with a corresponding dongle. The 2.4GHz module in the EUT is operating in the frequency range from 2408MHz to 2474MHz (67 channels with 1MHz channel spacing). The EUT is powered by 1.5VDC "AA" size batteries.

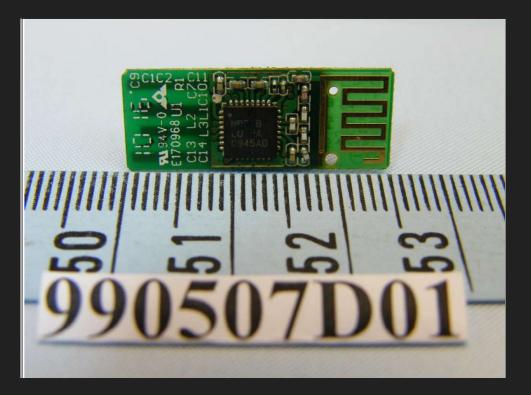
The Model: 2603754, 2603755, 2603770, DM-3652RM and DM-3752RM are the same as the Model: 2603752 in hardware aspect except different color and cosmetic details. The difference in model number serves as marketing strategy. Only model: 2603752 is tested.

Antenna Type : Internal, Integral

RadioShack Dongle Test Report

- 2408-2474 MHz
- 34 channels, 2 MHz spacing
- GFSK modulation
- 1Mbps data rate
- Neutron Engineering test lab

Frequency Channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
01	2408	10	2426	19	2444	28	2462
02	2410	11	2408	21	2446	29	2464
03	2412	12	2430	21	2448	30	2466
04	2414	13	2432	22	2450	31	2468
05	2416	14	2434	23	2452	32	2470
06	2418	15	2436	24	2454	33	2472
07	2420	16	2438	25	2456	34	2474
08	2422	17	2440	26	2458		
09	2424	18	2442	27	2460		

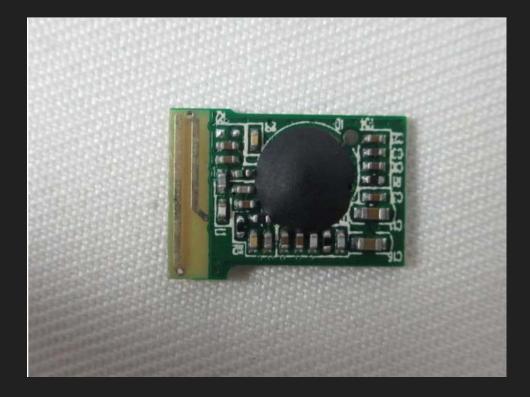

Equipment	2.4GHz Nano Transceiver			
Brand Name	Fujitsu			
Model Name.	DR-9053RM; DR-9055RM			
Model Difference	Only difference is model name.			
	The EUT is a 2.4GHz Nano Transceiver.			
Product Description	Product Type	Low Power Communication		
	Operation Frequency	2408~2474 MHz		
	Modulation Technology	GFSK		
	Data rate	1Mbps		
	Number of Channel	34CH .Please see note 2. (Page 9)		
	Antenna Gain(Peak)	Please see note 3.(Page 9).		
	Field Strength	68.87 dBuV/m (AV Max.)		
	Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification. Please refer to the User's Manual.			
Power Source	DC voltage supplied from system.			
Power Rating	I/P AC 120V/60Hz O/P DC 5V			
Connecting I/O Port(s)	Please refer to the User's Manual			

Internal Photos

- Varying degree of resolution
- Some vendors blackout RFIC markings
- No standardization

Internal photo of a Microsoft dongle

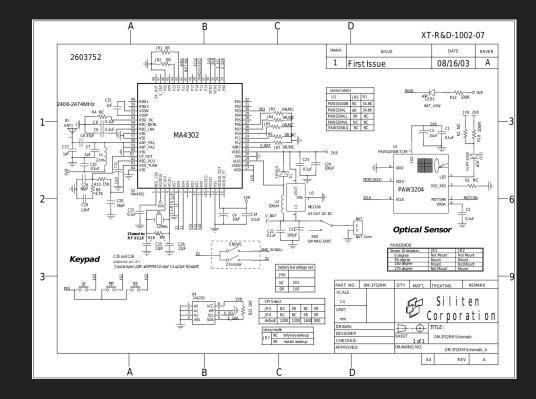
- nRF24LU+
- Partially blacked out markings
- Well documented RFIC
- (easy mode)


RadioShack Mouse Internal Photos

- Low resolution
- Nothing useful

RadioShack Dongle Internal Photos

- Better picture
- Still nothing useful



Schematics

- Most vendors request permanent confidentiality on schematics
- More common with lesser known manufacturers
- When available, extremely useful to learn RFIC specifics

RadioShack Mouse Schematic

• MA4302 RFIC

Operational Descriptions and User Manuals

- Describes the device behavior in an undefined format
- Hit or miss, but potentially fruitful
- Some vendors include useful technical details

RadioShack Mouse Operational Description

- Bluetooth !?!?
- FSK modulation
- 2408-2474 MHz
- 67 channels
- MA4302 RFIC

Technical Description

The Equipment Under Test (EUT) is a Wireless Optical Mouse. It can pair with a corresponding dongle. The 2.4GHz module in the EUT is operating in the frequency range from 2408MHz to 2474MHz (67 channels with 1MHz channel spacing). The EUT is powered by 3.0VDC (2×1.5 VDC "AAA" size batteries).

2.4GHz Bluetooth Module: Modulation Type: FSK Antenna Type: Integral, Internal (PCB Trace) Frequency Range: 2408MHz - 2474MHz, 1MHz channel spacing, 67 channels

Nominal field strength is 96.0dBµV/m @ 3m Production Tolerance of field strength is +/- 3dB Antenna gain is 1.1dBi

The functions of main ICs are mentioned below.

1. 2.4GHz module MA4302

- 1) MA4302 acts as the 2.4GHz radio core of 2.4GHz module
- 2) 12MHz crystal (X1) provides clock for MA4302
- 3) U4 (24LC02) is serial EEPROM for parameter backup of MA4302

RadioShack Dongle User Manual

- 2408-2472 MHz
- GFSK modulation
- 1Mbps data rate
- human house only!!!

- 3. Wireless specifications
- 2.408-2.474GHz frequency coverage.
- GFSK RF transceiver
- High Speed RF link data rate Max. 1M bit/s

Caution

Please use the Transceiver in human house only and keep away water.

Children don't to install the Transceiver.

MA4302 mouse via Google-fu

- Marketing material from another mouse with the same RFIC
- FSK modulation
- FHSS
- Mosart MA4302 RFIC
- More Google-fu, still no RFIC spec sheet

STANDARDS SUPPORTED Low-power FHSS FSK wireless technology

BATTERY AND POWER Batteries: 1 x AA Battery life: up to 500 hours continuous use

ADVANCED FEATURES 2 mouse buttons Scroll/Click wheel Select DPI button

ADDITIONAL SPECIFICATIONS Optical Sensor type: IR (Avago A3000) Chipset type: Mosart MA4302 Sensor resolution: 1000, 1500, 2000 DPI (native) 3 slide skids Tracking speed: 30 ips max. Acceleration: 20 g max. Latency: < 16 ms

SUPPORTED OPERATING SYSTEMS Microsoft® Windows® XP, Windows Vista®, Windows® 7, MAC® OSX™

WIRELESS RANGE Up to 10 metres

FREQUENCY RANGE 2.4 GHz ISM band

So what do we "know"?

- GFSK modulation
- 2408-2474 MHz frequency range
- 34 or 67 channels
- 1Mbps data rate
- Maybe FHSS?
- Maybe Bluetooth?

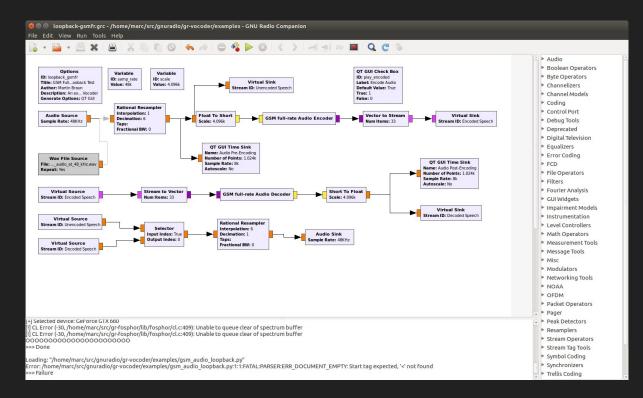
2. Verify w/ Spectrum Analyzer

Tools and Equipment

- Software Defined Radio
- RF Test Enclosure
- GNU Radio
- gr-fosphor
- baudline
- RadioShack mouse and dongle

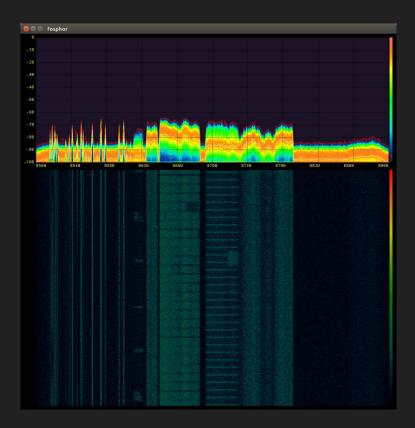
Software Defined Radio

- 1. Streams raw RF data to a host computer
- 2. Reconfigurable bandwidth and center frequency
- Lots of popular options (USRP, BladeRF, HackRF, RTL-SDR, LimeSDR, etc)

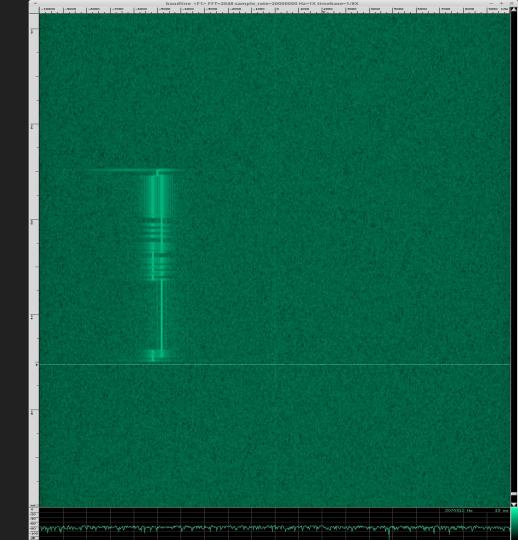


GNU Radio

- Open source SDR toolkit written in C/C++ and Python
- Large selection of signal processing libraries
- Hardware support for common SDR platforms
- Efficient prototyping


GNU Radio Companion

- Drag and drop flow graph creator
- Quick and easy


gr-fosphor

- OpenCL/OpenGL accelerated spectrum visualization tool
- Out-of-tree GNU Radio module

baudline / gr-baz

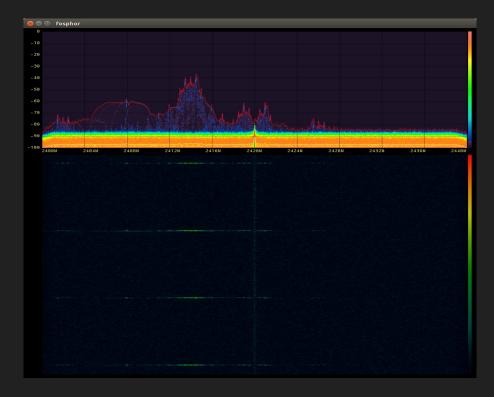
- Spectrum visualization tool
- Excellent for analyzing signals
- GNU Radio block in gr-baz

RF Test Enclosure (Faraday Cage)

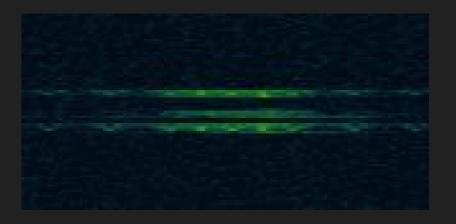
- Attenuates the ARFz
- Isolate devices for reverse engineering
- Prevent unintended side effects of fuzzing
- Keeps the FCC happy :)

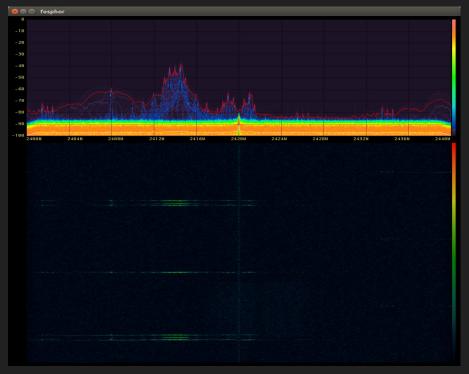
SDR to gr-fosphor flow graph

- USRP data source
- gr-fosphor data sink
- 40 MHz bandwidth
- 2420 MHz center frequency
- 15 dB antenna gain


😡 😑 💷 usrp-to-fosphor.grc - /home/marc/scratch - GNU Radio Companion	
File Edit View Run Tools Help	
📭 • 🖻 • 🖉 🗶 🖶 🗶 🖷 🋍 🛇 (♠ 🥔 🖨 🍣 🕨 🎯 🌾 🔪 🖂 🕾 📼 🔍 (C &
usrp-to-fosphor W usrp-gfsk-tobytes W Options ID: top, block Generate Options: OT GU Usriable User: 600 User: 600	Audio Audio Boolean Operators Channelizers Channel Models Coding Control Port Debug Tools Deprecated Digital Television Equalizers Error Coding FCD File Operators Filters Fourier Analysis Cull Vidgets Impairment Models Instrumentation Level Controllers Math Operators Massage Tools Misc Modulators NoAA OPDM
	Packet Operators
ienerating: '/home/marc/scratch/top_block.py' xecuting: /usr/bin/gnome-terminal -e /usr/bin/python2 -u /home/marc/scratch/top_block.py >> Done	 Pager Peak Detectors Resamplers Stream Operators
howing: "/home/marc/src/mousejack/scratch/untitled.grc"	 Stream Tag Tools Symbol Coding

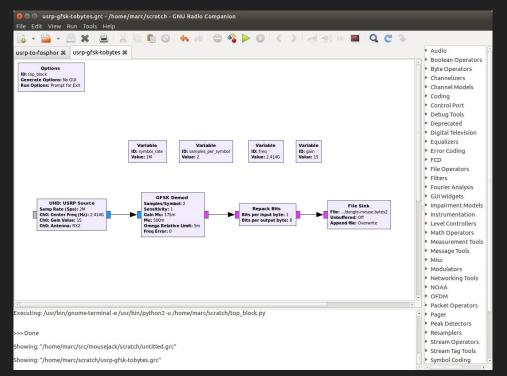
RF Test Enclosure


gr-fosphor: RadioShack dongle


- 2414 MHz
- TX at regular intervals
- Looks about 1 MHz wide
- Sync packet?

gr-fosphor: RadioShack mouse + dongle

- Also camped at 2414 MHz
- 3 packet sequence with mouse movement
- Sync + data + ack?



3. ARFz to Bytes

Flowgraph to demodulate mouse/dongle traffic

- USRP data source at 2414 MHz
- GFSK demodulator
- 2 MHz sample rate
- 2 SPS (1Mbps data rate)
- Bits to bytes
- File data sink

Capture some packets

- Need to generate repeated packets
- Capture dongle alone to isolate the sync packets
- Capture mouse + dongle, repeatedly clicking the mouse

4. Packet Format

Anatomy of an RF packet

Preamble Clock correction / synchronization

Sync field Start of payload delimiter, can be static value or the address

Address Receiver address

Header Describes the packet, depending on protocol complexity

Payload The actual data being transmitted

Checksum Checksum, CRC, etc

Postamble End of frame delimiter, more clock correction

Prep the data (binary to hex)

- \$ xxd -p dongle.bytes | tr -d '\n' > dongle.bytes.hex
- \$ xxd -p dongle-mouse.bytes | tr -d '\n' > dongle-mouse.bytes.hex

Standard command line tools enable quick and dirty analysis.

- grep
- xxd
- sort
- uniq

Byte boundaries mean we only see a subset of the packets.

Find the preamble (dongle)

\$ grep -Po "(00|ff|aa|55)+" dongle.bytes.hex | sort | uniq -c | sort -nr 528 555555555

- 514 ffff
- 468 aaaaaaaaa
- 392 ffff55555555555
- 349 ffffaaaaaaaaaaa
- 281 55ff
- 243 aaaa
- 226 5555
- 158 aa55
- 156 55aa

We grep for a tone (0x00 or 0xFF), or alternating 1's and 0's (0xAA or 0x55).

Find the longest repeated sequences (dongle)

\$ grep -Po "(ffff[a5]{12}).{16}" dongle.bytes.hex | sort | uniq -c | sort -nr 392 ffffaaaaaaaaaaaaaaaaaaaaaaaf116e8d14b782aff

- Look for shifted preamble variants (FFFF followed by 12 A's or 5's)
- Increase the number of bytes after the preamble until it no longer repeats
- The most repeated sequence is likely the dongle sync packet

Sanity check the packets (dongle)

\$ grep -Pob "(ffffaaaaaaaaaa1116e8d14b782aff)+" dongle.bytes.hex | head -n 10
28215:ffffaaaaaaaaaaa1116e8d14b782aff
32221:ffffaaaaaaaaaaa1116e8d14b782aff
44253:ffffaaaaaaaaaaa1116e8d14b782aff
56291:ffffaaaaaaaaaaa1116e8d14b782aff
58297:ffffaaaaaaaaaaa1116e8d14b782aff
80365:ffffaaaaaaaaaaa1116e8d14b782aff
84377:ffffaaaaaaaaaaa1116e8d14b782aff
98420:ffffaaaaaaaaaaa1116e8d14b782aff
126506:ffffaaaaaaaaaaa1116e8d14b782aff

Packet offsets are multiples of ~2000 bytes, or 16ms. Looks good!

Isolate the mouse packets

\$ sed -i "s/ffffaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaf116e8d14b782aff//g" dongle-mouse.bytes.hex

Remove the dongle packets from the mouse + dongle capture to isolate the mouse packets.

Find the preamble! (mouse)

\$ grep -Po "(00|ff|aa|55)+" dongle.bytes.hex | sort | uniq -c | sort -nr 2898 ffff 765 5555555555 666 aaaaaaaaaa 578 ff00 357 55ff 280 aaaa 272 5555 215 55aa

204 aa55

We grep for a tone (0x00 or 0xFF), or alternating 1's and 0's (0xAA or 0x55).

No repeated occurrences of the dongle preamble, so we'll try 'em all!

Find the longest repeated sequences (mouse)

\$ grep -Po "aaaa.{20}" dongle-mouse.bytes.hex | sort | uniq -c | sort -nr | head -n 10

- 14 aaaa1116e8d12**6**dbfa**706a**ff
- 11 aaaa1116e8d12**1**dbfa**e0ef**ff
- 10 aaaa1116e8d12**e**dbfa**d1c3**ff
- 8 aaaa1116e8d12**f**dbfa**e1f4**ff
- 7 aaaa1116e8d12**d**dbfa**819a**ff
- 7 aaaa1116e8d12**9**dbfa**4146**ff
- 7 aaaa1116e8d12**8**dbfa**7171**ff
- 6 aaaa1116e8d12**3**dbfa**8081**ff
- 6 aaaa1116e8d122dbfab0b6ff
- 5 aaaa1116e8d12ddbfa819aff

Many repeated payloads, which may point to a sequence number.

Sanity check the packets (mouse)

\$ grep -Pob "(...)" dongle-mouse.bytes.hex | head -n 10 167823:aaaa1116e8d126dbfa706aff 263746:aaaa1116e8d122dbfab0b6ff 303715:aaaa1116e8d126dbfa706aff 423469:aaaa1116e8d121dbfae0efff 455379:aaaa1116e8d127dbfa405dff 591291:aaaa1116e8d124dbfa1004ff 691083:aaaa1116e8d121dbfae0efff 738884:aaaa1116e8d128dbfa7171ff 878869:aaaa1116e8d129dbfa4146ff 1170597:aaaa1116e8d12edbfad1c3ff

Packet offsets are multiples of ~2000 bytes and more spaced out than the dongle packets. Looks good!

Packet candidates

Dongle packet:

ffffaaaaaaaaaaaaaa1116e8d14b782aff

Address / sync word?:

1116e8d1

Preambles / postambles:

ffffaaaaaaaaaaaa aaaa ff Mouse packets:

aaaa1116e8d126dbfa706aff aaaa1116e8d121dbfae0efff aaaa1116e8d12edbfad1c3ff aaaa1116e8d12fdbfae1f4ff aaaa1116e8d12ddbfa819aff aaaa1116e8d129dbfa4146ff aaaa1116e8d128dbfa7171ff aaaa1116e8d123dbfa8081ff aaaa1116e8d122dbfab0b6ff aaaa1116e8d122dbfab0b6ff

Checksum / CRC

- 3 byte dongle payload
- 5 byte mouse payload
- potentially an 8 or 16 bit CRC (if any)
- check dongle payloads with CRC RevEng

\$ reveng -w 16 -s 26dbfa706a 21dbfae0ef 2edbfad1c3 2fdbfae1f4 2ddbfa819a
29dbfa4146 28dbfa7171 23dbfa8081 22dbfab0b6 2ddbfa819a

reveng: no models found

No dice :/

How about whitening?

- Some guesswork is required
- XOR'ing with some value?
- Reverse byte order?

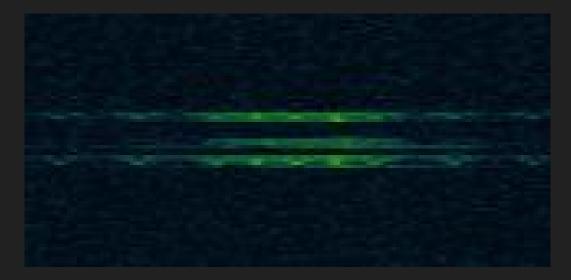
\$./reveng -w 16 -s 7c81a0302a 7b81a0b5ba 7481a0998b 7581a0aebb 7781a0c0db
7381a01c1b 7281a02b2b 7981a0dbda 7881a0ecea 7781a0c0db

width=16 poly=0x1021 init=0x0000 refin=false refout=false xorout=0x0000
check=0x31c3 name="XMODEM"

Success!! Payloads are whitened by XOR'ing with 0x5A repeated, and the CRC is in reversed byte order. Dongle payload appears to have no CRC.

Mouse click packet format

Preamble	AAAA	
Address	1116E8D1	
Payload	3 bytes	
Checksum	CRC-16 XMODEM	
Postamble	FF	


5. Payloads and Protocol

Build out the model with additional test data

- Test second mouse/dongle set to identify static vs. dynamic values
- Dongle sync packets are identical across devices, appear to be unprotected by CRCs
- Sync field is unique across devices, so it is indeed an address
- Second mouse/dongle set camps at 2426 MHz
- Mouse movement packets are 5 bytes in length

What about ACKs?

\$ grep -Pob "1116e8d1.{12}" dongle-mouse.bytes.rev.hex
1932509:1116e8d120dbfad0d8 - mouse click payload
1932592:1116e8d14b78ff2752 - ACK(?), ~300us later

TDMA timing

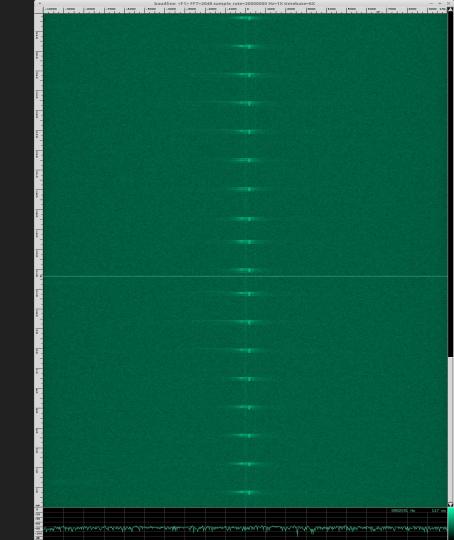
- Dongle transmits sync packets every 16ms
- Mouse transmits packets following sync packets
- Dongle ACKs mouse packets

Reverse Engineering Payloads

- Generate RF traffic with known expected behavior
- Mouse clicks, scrolling, movement
- What changes over the air?

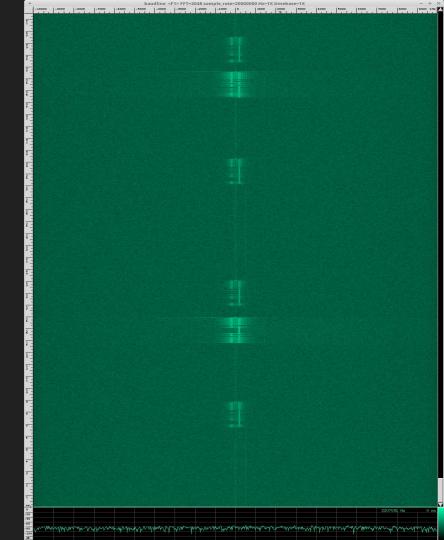
Mouse Payload Formats

Movement	Scroll	Click
4D 08 07 06 05	7E 81 FF	7A 81 Al // left down 7A 01 Al // left up
4 Frame Type	7 Frame Type	7 Frame Type
D Sequence Number	E Sequence Number	A Sequence Number
08 X1	81 "Button" State	81 Button State
07 X2	F Button Type (Scroll Wheel)	A Button Type (Button)
06 Y1	F Scroll Motion (Down 1)	
05 Y2		

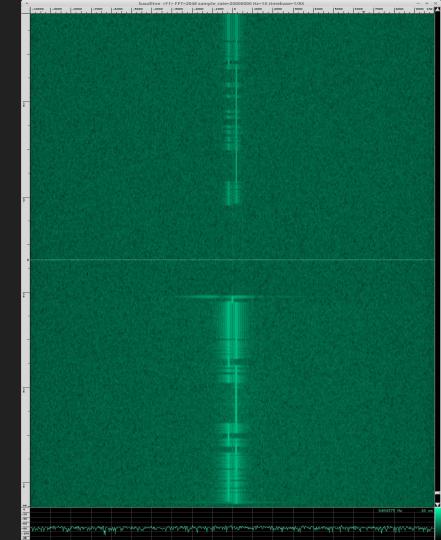

So what have we learned about the mouse?

- 4 packet formats
 - Dongle sync
 - Dongle ACK
 - Mouse movement
 - Mouse click
- GFSK modulation, 1Mbps data rate
- Device pair camps on a single channel
- Dongle transmits timing and frequency synchronization packets

- Mouse times its transmissions based on the dongle
- Likely 34 channels, spaced at 2 MHz, between 2408-2474 MHz
- Definitely not Bluetooth
- XMODEM variant of CRC-CCITT


Quadcopter Visual Analysis

- Controller Only
- Transmitting every ~15ms


Quadcopter Visual Analysis

- Quadcopter Connected to
 Controller
- Quadcopter perhaps ACKs controller packets (higher power packets)

Quadcopter Visual Analysis

- Quadcopter Connected to
 Controller
- Zoomed in view
- FSK symbols are clearly visible

Process Recap

- 1. OSINT
- 2. Verify w/ Spectrum Analyzer
- 3. ARFz to Bytes
- 4. Packet Formats
- 5. Payloads and Protocol

MouseJack Demo - CrazyRadio Dongle

- nRF24LU1+ based dongle
- Part of the CrazyFlie project
- Open source
- 225 meter injection range with yagi antenna

MouseJack Demo - Logitech

- Forced pairing
- Disguise keyboard as mouse
- Unencrypted keystroke injection into keyboard address
- Firmware patch issued by Logitech

Questions?

Marc Newlin

marc@bastille.net

@marcnewlin